Coding Activities Day One:
CSTART Basic Python Workshop
This guide outlines lesson plans for the first day of the Python Basics Workshop. Below each activity title there is a table which provides a list of files that are relevant to the specific lesson. Following the table there is a description of the lesson.

IDLE demo:

	IDLE demo Files

	HandOut.docx

Refer to the handout to find the IDLE demo. Walk students through the demo and have them complete the activity that is described at the end of the demo.
Activity 1 - Fun With Functions

	Fun With Functions Files

	FunWithFunctions.docx

	Day 1.pptx slides 1 – 8 syntax review

	Day 1.pptx slides 8 – 9 activity description

Refer to the Fun With Functions slides in the Day 1 Powerpoint (slides 8 – 9) for instructions and the FunWithFunctions.txt document for functions cards.

Activity 2 - Rock Paper Scissors:

	Rock Paper Scissors Files

	ActivitySolutions/Rock_Paper_Scissors_Python.py

	Day 1.pptx slides 11 – 15 activity description

	Day 1.pptx slides 16 – 19 Flowcharting

In this activity, students will program the game rock, paper scissors, where a human will play against a computer that randomly selects rock, paper or scissors.
1. Spend 10 minutes designing your program. With your partner, you should:
2. On the handout, document:
· What are the inputs?
· What are the outputs?
· What are the decisions?
· How many times will the game be played? A fixed number? Based on user input?
· How will you determine the computer player’s choices? Randomly? Fixed pattern?
3. Once you feel comfortable with your design, start writing your program.
4. After programming is finished, discuss Powerpoint slides 16 – 19 to relate rock paper scissors to the organization and planning processes of flowcharting and pseudocode.

Activity 3 - Turtle Art:

	Turtle Art Activity Files

	ActivitySolutions/Turtles.py

	Day 1.pptx slides 19 – 31

	HandOut.docx

	Objects First.docx

1. [bookmark: _GoBack]Use the Objects First.docx document as an introduction to Turtles.
2. Start by giving students time to read through the provided Turtle Art code. Tell them that they should have questions since the code has multiple functions that are fairly complex. They should actively read, writing their questions and interesting things that they notice to the right of the code.
3. Project the code on the board. Ask students what they noticed and what questions they have about the code.
4. Walk through the Turtle Code Anatomy slides.
5. Have students expand upon the code. Prompt them with these questions:
· Read and understand the functionality of the turtle code
· Expand on the current code to add more functionality to current methods or create your own methods. Add clouds, trees, a whole garden?
· Can you create a cat or dog?
· Decide what you want to create. Write the top level function in pseudocode.
· Be creative!

Activity 4 – Debugging:

	Debugging Activity Files

	HandOut.docx

	Day 1.pptx slides 33 – 40

	ActivitySolutions/guess_the_number_ERRORS.py

	ActivitySolutions/guess_my_number.py

	ActivitySolutions/printdebugging

1. Use the Guess My Number code from the handout or use the actual Python file to walk through code tracing using Powerpoint(slides 35 – 37).
2. Have students trace through the guess_the_number_ERRORS.py file using the actual Python code or the code provided in the handout.
3. Have students debug the print debugging code.

Activity 5 - Mastermind:
	Mastermind Files

	HandOut.docx

	ActivitySolutions/mastermind_Solution1.py

	ActivitySolutions/mastermind_Solution2.py

1. Explain the Rules of Mastermind:
· Mastermind is a game with 2 roles:
· Code maker
· Code breaker
· The code maker selects a secret 4 digit number
· The code breaker guesses a 4 digit number
· The code maker tells the code breaker how many digits of the guessed number are present and how many numbers are in the correct place.
· Play continues until all 4 numbers are correct and in the correct location
2. Allow students to play Mastermind with their partners for a few minutes
3. Direct students in the Mastermind brainstorming process.
4. Have students program Mastermind.
5. Once students are done coding, have students swap code and review each other’s code.

