Recursion
Calling a Function from Within Itself

C-START Python PD Workshop
Recursive functions are functions which rely on themselves to calculate part of the answer. Recursive functions usually have a base case that causes the recursion to end. Here is an example as a story:

A child couldn't sleep, so her mother told a story about a little frog, who couldn't sleep, so the frog's mother told a story about a little bear, who couldn't sleep, so the bear's mother told a story about a little weasel... who fell asleep.
...and the little bear fell asleep;
...and the little frog fell asleep;
...and the child fell asleep.
Base Case

A child couldn’t sleep, so her mother told a story about a little frog, who couldn’t sleep, so the frog’s mother told a story about a little bear, who couldn’t sleep, so the bear’s mother told a story about a little weasel ...

...who fell asleep.
...and the little bear fell asleep;
...and the little frog fell asleep;
...and the child fell asleep.
Recursive Part

A child couldn’t sleep, so her mother told a story about a little frog, who couldn’t sleep, so the frog’s mother told a story about a little bear, who couldn’t sleep, so the bear’s mother told a story about a little weasel

...who fell asleep.

...and the little bear fell asleep;
...and the little frog fell asleep;
...and the child fell asleep.
Consider the factorial operation.

\[n! = n \times (n - 1) \times (n - 2) \times \cdots \times 1 \]
Consider the factorial operation.

\[n! = n \times (n - 1) \times (n - 2) \times \cdots \times 1 \]

We could define this recursively as:

- **Base case:** \(0! = 1 \)
- **Recursive part:** \(n! = n(n - 1)! \)
Consider the factorial operation.

\[n! = n \times (n - 1) \times (n - 2) \times \cdots \times 1 \]

We could define this recursively as:

- **Base case:** \(0! = 1 \)
- **Recursive part:** \(n! = n(n - 1)! \)

To code this as a recursive function in Python, we could do:

```python
def fact(n):
    if n == 0:
        # base case
        return 1
    return n*fact(n-1)  # recursive part
```
Recursion in Practicality: Euclid’s GCD

The GCD of a and b is:

- a if $b = 0$
- $\text{gcd}(b, a \mod b)$ otherwise

More info about why this is so can be found at https://en.wikipedia.org/wiki/Euclidean_algorithm
The GCD of a and b is:

- a if $b = 0$
- $\text{gcd}(b, a \mod b)$ otherwise

More info about why this is so can be found at https://en.wikipedia.org/wiki/Euclidean_algorithm

Implementation in Python:

```python
def gcd(a, b):
    if b == 0:  # base case
        return a
    return gcd(b, a % b)  # recursive part
```
The \(n \)-th Fibonacci number, \(F(n) \), is:

- \(n \) if \(n = 0 \) or \(n = 1 \)
- \(F(n - 1) + F(n - 2) \) otherwise

Try it yourself: Implement a Python function which calculates the \(n \)-th Fibonacci number recursively.